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ABSTRACT
Some bugs are just that—a one off. A wayward moth that
just happens to be innocently fluttering through the wrong
relay at the wrong time. But some kinds of bugs aren’t like
that. Instead, they have risen to superstar status, plaguing
veterans and newcomers alike. But what if these aren’t
bugs at all? What if they are actual deficiencies in safety
and robustness offered by the C programming language as a
consequence of the degree to which guesswork is introduced.
Here we explore a more explicit approach to systems level
programming supported by Rust, which we believe will better
promote understanding of design intent, and eliminate some
of the guesswork. Guided by a set of classic, but still relevant,
bugs identified almost 15 years ago by Engler, we consider
this in the context of the new generation of students learning
about systems in a typical OS course, where students often
first encounter these deficiencies.

1. INTRODUCTION
Concurrency, parallelism, memory management, process
scheduling, deadlocks, mutexes, system calls, filesystems,
and architectural considerations are all commonly taught
concepts in Operating Systems courses. These topics can be
a struggle to understand, even for determined students, due
to their complex, low-level characteristics.

Instructors may also find themselves struggling, as these
assignments can be difficult to create, and at times nearly
impossible to evaluate effectively. Instructors and their mark-
ers desire assignments which are simple enough to fit into a
few files, demonstrate understanding of failure modes, can be
tested effectively in an automated fashion, and show students
the caveats of their attempts to solve the problem. In many
cases, a trade-off is necessary. For example, building an
interactive shell is a common, and much loved, assignment
in which instructors must balance the number of features
required with the time provided. Features such as pipes,
background tasks, tab-completion, and environment vari-
ables are all desirable and interesting to implement, but

contribute greatly to the complexity of the code, as well as
the amount of time it takes to evaluate.

On top of the complexity, the ambiguity of language fea-
tures means that year after year new students hit the same
old bugs—eventually. Engler et al. [6] identified a number
of problem classes in their work in static analysis that has
served as a foundation for many tools in systems [22], ap-
plications [12] and even compiler extensions derived from
hardware specifications [4]. Students and professionals alike
are perplexed by seemingly simple questions such as:

• Can routine F fail?
• Must A be paired with B?
• Does security check Y protect X?
• Can A be done after B?
• Does lock L protect V?

In this short paper we demonstrate precisely how Rust ad-
dresses these potential bugs in a clear, clean, safe and robust
manner. After introducing Rust (Section 2), we discuss how
Rust approaches and helps solve to these common bug cate-
gories (Section 3). We also discuss the goals of “Safety”, the
state of tooling, and the Rust community (Section 4), before
closing with Future Work (Section 5).

2. INTRODUCING RUST
Rust [21] is a systems oriented ML-family language supported
by Mozilla Research. It was originally conceived by Graydon
Hoare and reached its first stable release on May 15, 2015
[3]. It is dual licensed Apache and MIT, fully open source,
and governed through an extensive Request For Comment
(RFC) process.

Rust offers a robust set of desirable features for systems code:
ahead-of-time compilation, zero-cost abstractions, move se-
mantics, guaranteed memory safety, threads without data
races, trait-based generics, pattern matching, type inference,
minimal runtime (removable, [11]), no garbage collector or
VM necessary, efficient C bindings and robust static analysis

It accomplishes these features through a number of novel
techniques largely built off its type system and the borrow
checker. The Rust community has been working to firmly
position Rust as a powerful tool for programming in ultra-
large, [8], embedded, and networking systems.



2.1 Rust Basics
To someone familiar with C/C++ the syntax of Rust will ap-
pear reasonably familiar. Rust differs in many ways though,
believing in that it is better to be explicit and promote
understanding of what is occurring, than to expect the pro-
grammer to maintain all of this information in their head
and engage in guesswork.

This is a key motivating factor behind our proposed adoption
of Rust in OS courses, we believe this quality does not do away
with conciseness or elegance of code. Community members
have developed bindings for well-known tools like Redis [17]
and found the APIs for equivalent Rust and Python actions
of relatively similar “feel”, despite the benefits of Rust’s type
system providing an additional safety net [1].

Rust does, however, have significant semantic differences
compared to C-like languages. For variable declaration, Rust
has the let keyword which is immutable by default, mutability
is opt-in via let mut. This opt-in mutability was found by
the community to encourage better code. Instead of the
programmer needing to remember to use const the compiler
informs them of any variables they might have forgotten to
make mutable or if it is unnecessarily mutable.

As well, function definitions differ from C-like languages.
This change makes function definitions easier to comprehend
when dealing with complex parameters, generics, and return
values. Numerous reasoning for why C’s declaration syntax
is inadequate were well explained by Rob Pike [9].

fn example_simple()
fn example_params(x: u64, y: &u64, z: &mut u64)
fn example_returns(x: u64) -> u64
fn example_generic<U: Read>(reader: U) -> u64
fn example_generic_alt<U>(reader: U) -> u64

where U: Read

2.2 A Strong Type System
While a dynamic type system is desirable in some areas,
particularly in higher level code, things like implicit, possibly
lossy data conversions can often be dangerous in system code.
In our experience, many operating systems students also
struggle with the mental concepts of pointers and their uses.
This can lead to taking pointers as values and performing
pointer arithmetic.

The programmer is not prevented from doing these things in
Rust, it only ensures that it is actually the intended action.
For many students though, attempting to cast pointers into
a value is actually a mistake in their intention. Rust helps
users with this by automatically dereferencing pointers when
necessary, and providing stronger tools for common places
where these mistakes crop up, like string indexing or dynamic
array access.

Types can be created easily, and there are three basic com-
pound data structures, struct, enum, and tuples. structs
and tuples are similar to other languages. Rust’s enums are
able to represent variants with encapsulated values, generics,
and even structs!

// Structure with generic
struct One<T> {

foo: usize,
bar: T

}
// 2-tuple
struct Two(usize, usize);
// Enum
enum Three {

// Plain.
Foo,
// Variant with Tuple.
Bar(usize),
// Variant with Struct.
Baz { x: u64, y: u64, z: u64, },

}

2.3 We Don’t Need A null
Cited by its creator [24] as a ‘billion-dollar mistake’ null is
one of the most dangerous thorns in a programmers toolbox.
What’s more is that these errors happen at runtime and may
take down live systems.

In languages like C, C++, and Java a tremendous amount
of research and development time has gone into develop-
ing products like Coverity [5] and PVS-Studio [16] to help
discover possible null pointer inconsistencies. Engler et al
suggest heuristic methods to determine the ‘null state’ of a
variable throughout the control flow of a program. What
if programmers could just stop worrying about null all to-
gether?

Many functional languages like Haskell and F# have the
concept of an Option, a concept that Rust shares. Instead of
needing to be aware of and check for null at every occurrence,
the language semantics require the programmer to explicitly
decide on the control flow for all values.

// Create a `Some(T)` and a None.
let maybe_foo = Some(0);
let not_foo = None;
// Unwrapping.
let foo = maybe_foo.unwrap();
let default = not_foo.unwrap_or(1);
let matched = match maybe_foo {

Some(x) => x,
None => -1,

};
// Mapping
let mapped = maybe_foo.map(|x| x as f64);

3. RUST: REDUCING BUGS THROUGH
LINGUISTIC FEATURES

In Rust, many common bugs can be prevented because: rou-
tines with the potential for failure carry it explicitly in their
function signature (Section 3.1), RAII is used to ensure allo-
cations are followed by frees (Section 3.2), security checks can
be required by the type system or through marker traits for
‘tainted’ data (Section 3.3), powerful move semantics elimi-
nate use-after-free errors (Section 3.4), and locks inherently
protect data, not code (Section 3.4).



3.1 Results and try!()
When working with traditional languages such as C and C++
it can often be difficult to answer the question “Can this
function fail?” Checked exceptions can help, but often APIs
are inconsistent, and checks for failure can be forgotten [6].
Some static analysis techniques can be used to determine
possible missed failure checks, such has detecting invocations
that do check for error. Having failure information included
in the function’s signature and requiring it to be explicitly
checked may be a more robust solution over heuristics though.

The Result<T, E> enum exists as either Ok(T) or Err(E)
and conveys the result of something which may fail with an
error. Using Rust’s match expression the user can act on
various error conditions or success.

use std::io;
use std::error::Error;
// Create an error. (Normally raised from lib)
let error = io::Error::new(io::ErrorKind::Other,

"I'm an example error!");
// The two result variants. Type notations usually
// not necessary except in small examples.
let success: Result<_, io::Error> = Ok("Success!");
let failure: Result<&str, _> = Err(error);
// Return either the value or the error description.
let val_or_desc = match success {

Ok(val) => val,
Err(ref e) => e.description(),

};

It is a compiler warning to perform an action such as
file.read_to_string(buf) which returns a Result<usize,
Error> and to not handle the error in some way. In Rust
is it idiomatic for any recoverable error to be passed up
the call stack to where it can be sensibly handled. While
approaching this idea newcomers typically struggle with the
fact that an io::Error and a Utf8Error are different types
and cannot be returned in the same Result<T,E>, since
the E value would differ and violate Rust’s strong typing.
This is typically solved by creating a new Error which is
an enumeration over the possible underlaying errors as well
as any the programmer may wish to include themselves.
Then there are the Into<T> and From<T> traits which can
be implemented to provide seamless interaction.

pub enum MyError {
Io(io::Error),
Utf8(Utf8Error)

}
impl From<io::Error> for MyError {

fn from(err: io::Error) -> Error {
Error::Io(err)

}
}
// ...

When working with functions which may return a Result<T,
E> it is common to use the try!() macro. This macro
expands to either unwrap the T value inside and assign it, or

return the error up the call stack. This helps reduce visual
‘noise’ and assist in composition.

fn open_and_read() -> Result<String, MyError> {
let mut f = try!(File::open("foo.txt"));
let mut s = String::new();
let num_read = try!(f.read_to_string(&mut s));
Ok(s)

}

Error handling in Rust is explicit, composable, and sane.
There are no exceptions, nulls, ‘magic numbers’ (like -1) or
anything that may prevent the programmer from handling
the error as they choose to, even if that is to simply .unwrap()
it and fail. It’s worth noting that even .unwrap()ing does
not actually crash the program as normally it unwinds the
stack, isolating failure to a single thread and preventing
inconsistent state.

3.2 Borrow and Move: Forget free()
In Rust there is the notion of moving, copying, and refer-
encing. In some ways Rust’s memory model is similar to
C/C++’s. It features a powerful pointer system that allows
programmers to make fine-grain, informed decisions about
how values are stored, passed, and represented. Like C++,
Rust makes use of a concept called Resource Acquisition Is
Instantiation (RAII). Rust goes a step further, introducing
the distinction between immutably borrowing (&), mutably
borrowing (&mut), copying (Copy trait), and moving values.
At any given time there may be any number of immutable
borrows, meanwhile there may only be one mutable borrow,
and a value may not be used in the function once it has been
moved out.

This makes it simple for a programmer to observe a func-
tion signature and determine which values the function may
mutate or consume, and which it may return. Using this
information the compiler is able to determine the lifetime
constraints of almost any value without additional notations.
In (rare, complex) cases where it does require additional
information, the programmer can annotate lifetimes just as
they would generic type parameters.

fn main() {
// An owned, growable,
// non-copyable string.
let mut foo = String::from("foo");

// Introduce a new scope.
{

// Reference bar is created.
let bar = &foo;
// Error, bar is immutable.
bar.push('c');

} // bar is destroyed.

// Error, bar does not exist.
let baz = bar;
// Works, reference mutable.
let rad = &mut foo;



rad.push('c');
} // foo is destroyed.

This behavior is very similar to C++’s RAII facilities and
ensures all values are safely destructed in a consistent, pre-
dictable manner as soon as they are no longer needed. The
programmer does not need to worry about making sure each
of their malloc() calls have a corresponding free() or rely
on an outside tool [6] to discover such errors. The borrow
checker is also able to determine when a value has been
moved into a function call and should not be further used in
the caller, eliminating another possible class of errors.

3.3 Traits: Zero-cost Abstractions
Rust does not use a class based or inheritance based sys-
tem. Data is stored in structs, primitives, or enums which
implement a set of traits that define how it interacts and
which functions are available to it. For example, the File
is a struct which implements Read and Write among other
traits. Other structures like TcpStream and UdpSocket also
implement the same Read and Write trait. Traits are zero-
cost abstractions that act to encourage common interfaces
and capabilities between like-structures [2].

struct Thing {
barred: bool,

}
trait Foo {

// Implementor must define.
fn bar(&mut self);
// Default definition.
fn do_bar(&mut self) { self.bar() }

}
impl Foo for Thing {

fn bar(&mut self) {
self.barred = true;

}
}

Traits fit easily together, are widespread in their implemen-
tation, and allow for common interfaces between modules
to permit better adaptability. Traits can also be used as
‘markers’ in design patterns like state machines to provide
additional compile time verification of correctness.

3.4 Static Analysis at the Core
Static analysis tools, like splint for C [23] are an invalu-
able tool for Operating Systems programming, particularly
when working on large codebases with multiple program-
mers. Rust’s type system and region based memory, based
on Cyclone [19], are particularly well suited to static analy-
sis. Indeed, rustc itself performs a tremendous amount of
static analysis without the help of external tools. The type
system carries all the information necessary for the compiler
to understand all possible control flows of the program, all
possible (recoverable) errors which arise, and the lifetimes of
each region of memory.

Of particular interest is rustc’s “Borrow Checker” which
analyzes and understands the pointer system and is able to

verify data safety, even across multiple threads. The borrow
checker is an area of active research [14]. As a result of the
static analysis done by rustc it is able to infer information
about (but is not limited to):

• Unused results, variables and functions.
• Unreachable code.
• Unsafe pointer sharing (multiple mutable pointers.)
• Incorrect type matching and lossy casts.
• Use-after-free errors.
• Unclear lifetimes (asking for either clarity or refactor-
ing.)

3.5 Threads that don’t Bite
Threading is perhaps one of the most powerful and robust fea-
tures of Rust. The characteristics detailed above culminate
in a sort of tour de force when used bravely in a threaded
context.

Harnessing the power of ownership semantics, the type sys-
tem, the standard library’s threading modules there are a
number of tools available [7]:

Channels provide a way to transfer messages (and owner-
ship) between threads without fear of there being later (un-
safe) access to the data by other threads. The default chan-
nel provided by the standard library is a Multiple-Producer,
Single-Consumer channel.

use std::sync::mpsc::{channel, Sender, Receiver};
let (send, recieve) = channel();

Locks can encapsulate data such that access is only granted
if the lock is held. In Rust, you don’t lock code, you
lock data, and it is safer because of it. Locks are typically
represented by Mutexs and shared between threads with an
Atomically Reference Counted structure (Arc). It should be
noted that this design of locking data prevents a lock from
being acquired and never given up, identified as common by
Engler [6].

use std::sync::{Arc, Mutex};
let data = Arc::new(Mutex::new(0));

Traits like Sync and Send are implemented on types and
symbolize if it can be sent or shared between threads safely.
These traits are not just documentation, they are intrinsic
to the language.

// Safe to share between threads.
use std::marker::Sync;
// Safe to transfer between threads.
use std::marker::Send;

Other, more fearless forms of concurrency such as sharing
stack frames is even encouraged by these models. This is
done via a scoped thread model.



fn main() {
let items = vec![1, 2, 3];
let mut guards = vec![];
for item in items {

let guard = thread::scoped(move || {
print!("{}", item);

});
guards.push(guard);

}
} // `guards` destroyed here, implicitly joining

4. SAFETY, TOOLS, AND COMMUNITY
The concept of “Safety” in code is often poorly defined, but
can be considered in three categories:

• Type Safety prevents or discourages type errors, such
as treating a float like an int. Rust and languages
like Haskell excel here as their type systems are strong,
explicit (but often inferred), and do not include the
notion of a null that can go anywhere indiscriminately.

• Memory Safety reduces or eliminates the possibility
of mistakes like writing a 64 bit value into a 32 bit
space (overwriting unintended data), or multi-threaded
mutable access to the same memory. Rust’s borrow
checker effectively eliminates data races in safe code
and strong type safety prevents unintended clobbering.

• Thread Safety prevents inter-thread race conditions,
such as one thread exiting when another thread is
waiting on data from it. Rust provides some robust
tools for managing thread pools integrated into its type
system, however some mistakes are still possible if the
programmer works hard enough to accomplish them.

Rust advertises both type safety and data safety. There is
still research and development to be done before it can truly
be considered thread-safe.

4.1 Tooling
Rust has a robust, opinionated set of tooling. The Rust
standard distribution includes rustc (the compiler), cargo
(a package manager and build tool), and rustdoc (a docu-
mentation generator). Currently there is work being done on
a rustfmt which would function the same as Go’s venerable
gofmt.

Package management via cargo is a feature Rust has inher-
ited from several other modern languages. All package depen-
dencies, build options, and tasks are defined in a Cargo.toml
file. Dependencies are checked and (if necessary) pulled on
cargo build, test, or doc.

Rust supports both unit tests and integration tests by default.
Unit tests may appear wherever is appropriate in the code
and are annotated by #[test], it is common for designers
to include a test module in their code. Integration tests
are written in the tests/ directory and allow a package to
be tested as a depended upon library. Testing is done by
simply invoking cargo test in the project directory. These
features blow away barriers which programmers might face
in other languages that would prevent them from bothering
to test. Additionally, it makes marking Rust based projects

very easy, all an instructor needs to do is provide (or replace)
the tests/ directory with an appropriate suite.

#[test]
fn test_passes() {

assert_eq!(true, true);
}
#[test]
#[should_panic]
fn test_fails() {

assert!(true == false);
}

Having a standardized, high quality documentation format
is invaluable for programmers, and Rust facilitates this. Doc-
umentation comments can be placed anywhere in the code
using /// for function level documentation or //! for module
level documentation. Documentation is in a common mark-
down format, code samples included in the documentation
are automatically processed as unit tests. Generating doc-
umentation is done by cargo doc, which generates HTML
and manpage documentation. Many Rust projects even go
so far as to automate the unit testing and documentation
generation step and hook it into their git commits [20].

4.2 Community
One of the biggest dangers in choosing a language that “Is
not C” to teach operating systems in is that it can be very
difficult for students to get help. Mozilla’s IRC network
hosts the popular #rust channel which regularly has over
800 members at any given time. crates.io hosts over 2300
packages. The language reached 1.0 on May 15, 2015 [3]
and has been in development since 2006. The community is
active and friendly with a variety special interest groups.

Best of all, there is active operating system development in
Rust. There is a project to develop coreutils [25], a kernel
[26], operating systems [18], and embedded system platforms
[27]. At the time of writing, these projects are young enough
that students could even contribute components upstream.

5. CONCLUSION AND FUTURE WORK
In this work we have overviewed some of the reasons to con-
sider Rust as the lanugage for a new generation of systems
programmers by highlighting precisely how Rust prevents
classic bugs. There is a considerable amount of research
remaining regarding Rust’s uses in systems code and pro-
gramming in the large in general. We seek to foster knowledge
of the language at the University of Victoria and are working
on developing distributed consensus algorithms like Raft [13]
and next generation initialization systems in the spirit of
OpenRC.
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